

Max Marks: 60 Date: 09.10.2022

JB 1 MR BATCH CHEMISTRY: DCT

Topic: Atomic Structure (Till lecture 3) + Mole Concept (Full)

1.	The effective neutron capture radius of a nucleus having a cross-section of 1.0 barn is												
	[Given,	1 bam = 1.0×10^{-2}	²⁴ cm ²]										
	(a)	$5.6\times10^{-13}cm$	(b)	$4.3\times10^{-13}\mathrm{cm}$	(c)	$2.3\times10^{-11}~cm$	(d)	$5.6\times10^{-24}\text{cm}$					
2.	The arg	ument which favou	ırs the pa	article nature of catho	de rays	is							
	(a)	they produce fluor	escence										
	(b)	they travel through	n vacuun	ı									
	(c)	they get deflected	by electr	ric and magnetic field	S								
	(d)	they cast shadows	of objec	ts present in their way	y								
3.	Magnit	ude of deflection of	cathode	rays in discharge tub	e is mo	re when							
	(a)	magnitude of charge	ge of the	particle is more									
	(b)	greater interaction	with the	electric or magnetic	field								
	(c)	less mass of the pa	ırticle										
	(d)	all the above											
4.	A neutral atom (Atomic no. > 1) consists of												
	(a)	Only protons			(b)	Neutrons + protons							
	(c)	Neutrons + electro	ons		(d)	Neutron + proton + electron							
5.	Atoms l	have a mass of the	order										
	(a)	10^{-28}	(b)	$10^{-15} \mathrm{kg}$	(c)	$10^{-26} \mathrm{g}$	(d)	$10^{-15} \mathrm{g}$					
6.	The rati	io of charge and ma	iss would	d be greatest for									
	(a)	Proton	(b)	Electron	(c)	Neutron	(d)	α particle					

Space for Rough Work

Learning with the Speed of Mumbai and the Tradition of Kota

7.	Cathod	le rays are									
	(a)	electromagnetic wa	aves		(b)	radiation					
	(c)	stream of alpha pa	rticles		(d)	stream of electrons					
8.	The fra	action of volume occ	cupied by	y the nucleus with res	spect to t	the total volume of ar	atom is				
	(a)	10^{-15}	(b)	10^{-5}	(c)	10^{-30}	(d)	10^{-10}			
9.	In the following reaction:										
	3Fe + 4	$4H_2O \longrightarrow Fe_3O$	$O_4 + 4H_2$, if the atomic weight	t of iron	is 56, then its equival	ent weig	ht will be:			
	(a)	42	(b)	21	(c)	63	(d)	84			
10.	Sulphu	r forms the chloride	s S ₂ Cl ₂ a	and SCl2. The equival	lent mas	s of sulphur in SCl ₂ is	S				
	(a)	8 g/mol	(b)	64.8 g/mol	(c)	16 g/mol	(d)	32 g/mol			
11.	_			combine with 80 g of weight of calcium is	of bromin	ne. One gram of calo	cium (va	lency = 2) combines			
	(a)	10	(b)	40	(c)	20	(d)	80			
12.	250 ml	of a sodium carbon	ate solu	tion contains 2.65 g o	of Na ₂ CO	O ₃ . If 10 ml of this so	olution is	diluted to 1 L, what			
	is the c	oncentration of the	resultant	t solution (mol. wt. of	Na ₂ CO	$_3 = 106$)?					
	(a)	0.1 M	(b)	0.01 M	(c)	0.001 M	(d)	$10^{-4} \mathrm{M}$			
13.	Numbe	er of molecules in 10	00 ml of	each of O ₂ , NH ₃ and	CO ₂ at S	STP is					
	(a)	In the order CO ₂ <	$O_2 < N$	H_3	(b)	In the order $NH_3 < 0$	$O_2 < CO_2$	2			
	(c)	$NH_3 = CO_2 < O_2$			(d)	The same					
14.	One lit	re of a gas at STP w	eight 1.	16 g it can possibly b	e						
	(a)	O_2	(b)	CO	(c)	C_2H_2	(d)	CH ₄			
15.				tion contains 2.65 g of t solution (mol. wt. of			olution is	diluted to 1 L, what			
	(a)	0.1 M	(b)	0.01 M	(c)	0.001 M	(d)	$10^{-4}\mathrm{M}$			

Space for Rough Work

Learning with the Speed of Mumbai and the Tradition of Kota

Max. Marks: 60 Date: 09.10.2022

JB 1 MR BATCH

		N		EMATICS : Date of the Dics: Permutation			ST	
16.	How 1	many different arra	angement	s can be made out of	the letter	rs in the expansion	on $A^2B^3C^4$, w	hen written in full?
	(a)	2! 3! 4!			(b)	2! + 3! + 4! (2	! 3! 4!)	
	(c)	9! 2!+3!+4!			(d)	9! 2! 3! 4!		
17.	The n	umber of proper d	ivisors of	1800 which are also	divisible	by 10, is		
	(a)	34	(b)	18	(c)	27	(d)	None of these
18.	A para	allelogram is cut b	y two set	s of m lines parallel to	o its side	es. The number of	of parallelogra	am, then formed is
	(a)	$(^{m+2}C_2)^2$	(b)	$(^{m+1}C_2)^2$	(c)	$({}^{\rm m}{\rm C}_2)^2$	(d)	None of these
19.				least one and at mos			on of (2n + 1)) distinct coins. If the
	(a)	32	(b)	16	(c)	8	(d)	4
20.	Total	number of positive	e integral	solutions of $15 < x_1 + x_2 = x_1 + x_2 = x_2 + x_3 = x_1 + x_2 = x_2 = x_2 = x_1 + x_2 = x_2 = x_2 = x_2 = x_1 + x_2 = x_2 $	$+ x_2 + x_3$	\leq 20, is equal to)	
	(a)	1245	(b)	685	(c)	1025	(d)	None of these
21.		chess tournament		itestant plays once ag	ainst eac	ch of the others a	nd in all 45 g	ames are played, then
	(a)	15	(b)	10	(c)	9	(d)	None of these
22.	${}^{n}C_{r} + {}^{r}$ (a)	${}^{n}C_{r-1} + {}^{n}C_{r-2} = {}^{n+1}C_{r-1}$	(b)	$^{n+2}C_r$	(c)	$^{n+2}C_{r+1}$	(d)	$^{n+1}C_{r}$

Space for Rough Work

Learning with the Speed of Mumbai and the Tradition of Kota

23.	A man	has / friends. In ho	ow many	ways he can invite o	one or mo	ore of them for a tea p	party	
	(a)	256	(b)	130	(c)	127	(d)	128
24.	A libra	ary has a copies of o	ne book	, b copies of each of t	wo book	ss, c copies of each of	f three be	ooks and single copy
	of d bo	ook. The total numb	er of wa	ys in which these boo	oks can b	be distributed is		
	(a)	$\frac{(a + 2b + 3c + d)}{a!(b!)^2(c!)^2}$	(b)	$\frac{(a+2b+3c+d)!}{a!b!c!}$	(c)	$\frac{(a+b+c+d)!}{a!b!c!}$	(d)	None of these
25.	The nu	ımber of lines drawr	n through	h 6 points lying on a c	circle, is			
	(a)	12	(b)	15	(c)	24	(d)	20
26.	The su	ım of proper divisors	s of 72 (1 and 72 are exclude)	is equal	to		
	(a)	194	(b)	195	(c)	122	(d)	None of these
27.	The va	alues of $\frac{1}{2^{n+1}C_r} + \frac{1}{2}$	$\frac{1}{2^{n+1}C_{r+1}}$	- is equal to				
	(a)	$\frac{2n+2}{2n+1} \cdot \frac{1}{^{2n}C_r}$	(b)	$\frac{1}{^{2n}C_r}$	(c)	$\frac{1}{^{2n}C_{r+1}}$	(d)	None of these
28.	Total 1	number of divisors of	of 480, th	nat are of the form 4n	+ 2, n ≥	0, is equal to		
	(a)	4	(b)	2	(c)	3	(d)	None of these
29.	Numb	er of zeroes at the er	nd of 300)! is equal to				
	(a)	98	(b)	74	(c)	89	(d)	75
30.	A box	contains two white	balls, th	ree black balls and fo	our red b	alls. In how many w	vays can	three balls be drawn
	from the	he box if at least one	e black b	all is to be included in	n the dra	w?		
	(a)	46	(b)	64	(c)	45	(d)	None of these

Max Marks: 60 Date: 09.10.2022

JB 1 MR BATCH CHEMISTRY : DCT ANSWER KEY

Topic: Atomic Structure (Till lecture 3) + Mole Concept (Full)

1.	(a)	2.	(c)	3.	(d)	4.	(d)	5.	(a)
6.	(b)	7.	(d)	8.	(a)	9.	(b)	10.	(c)
11.	(c)	12.	(c)	13.	(b)	14.	(c)	15.	(c)

Max Marks: 60 Date: 09.10.2022

JB 1 MR BATCH MATHEMATICS: DCT ANSWER KEY Topics: Permutation and Combination

16.	(d)	17.	(b)	18.	(a)	19.	(d)	20.	(b)
21.	(b)	22.	(b)	23.	(c)	24.	(a)	25.	(b)
26.	(c)	27.	(a)	28.	(a)	29.	(b)	30.	(b)